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Abstract. The ability to generate and manipulate broadband chiral terahertz waves is essential for applications
in material imaging, terahertz sensing, and diagnosis. It can also open up new possibilities for nonlinear tera-
hertz spectroscopy and coherent control of chiral molecules and magnetic materials. The existing methods,
however, often suffer from low efficiency, narrow bandwidth, or poor flexibility. Here, we propose a novel type
of laser-driven terahertz emitters, consisting of metasurface-patterned magnetic multilayer heterostructures,
that can overcome the shortcomings of the conventional approaches. Such hybrid terahertz emitters combine
the advantages of spintronic emitters for being ultrabroadband, efficient, and highly flexible, as well as those of
metasurfaces for the powerful control capabilities over the polarization state of emitted terahertz waves on an
ultracompact platform. Taking a stripe-patterned metasurface as an example, we demonstrate the efficient
generation and manipulation of broadband chiral terahertz waves. The ellipticity can reach >0.75 over a broad
terahertz bandwidth (1 to 5 THz), representing a high-quality and efficient source for few-cycle circularly
polarized terahertz pulses with stable carrier waveforms. Flexible control of ellipticity and helicity is also dem-
onstrated with our systematic experiments and numerical simulations. We show that the terahertz polarization
state is dictated by the interplay between laser-induced spintronic-origin currents and the screening charges/
currents in the metasurfaces, which exhibits tailored anisotropic properties due to the predesigned geometric
confinement effects. Our work opens a new pathway to metasurface-tailored spintronic emitters for efficient
vector-control of electromagnetic waves in the terahertz regime.
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1 Introduction
Coherent terahertz sources driven by femtosecond laser pulses
can now routinely generate sub-picosecond few-cycle terahertz
waves with exceptionally stable carrier waveforms, which can
be used in numerous fundamental studies and practical applica-
tions.1,2 The ability to manipulate the three-dimensional (3D)
electric-field vector of such broadband terahertz waveforms can
substantially broaden the applications of the terahertz tech-
nologies and open up new possibilities for studies of coherent

light–matter interactions,3–6 as well as of novel ultrafast quantum
control facilitated by phase-stable strong terahertz fields.7–9

Therefore, a great amount of research has been devoted to gen-
erating chiral terahertz waves and realizing full control over the
3D field-vectors in their amplitude, phase, frequency, polariza-
tion, and spatial properties. Hitherto, the existing methods can
be categorized into: (1) direct generation from gas plasmas, e.g.,
by applying external fields10–13 or a combined two-color laser
scheme,14,15 but these methods are only applicable for high-en-
ergy mJ-level laser amplifiers; (2) special frequency-conversion
techniques in nonlinear crystals,16,17 magnetic,18 and novel topo-
logical materials,19,20 yet the generation efficiency is usually low;
and (3) implementation of passive optical components, such as
terahertz polarizers21 and waveplates,22,23 yet they are often
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limited to narrow bandwidth. So, it still attracts great interest to
develop a flexible and robust solution for the efficient genera-
tion of broadband chiral terahertz waves.

Metasurfaces, two-dimensional (2D) metamaterials com-
posed by subwavelength planar micro-structures (e.g., “meta-
atoms”) with tailored electromagnetic responses, have greatly
enriched our capability of wave manipulation in the terahertz
regime.24–29 By engineering the electromagnetic properties of
individual meta-atoms and the collective coupling between
them, metasurfaces can precisely control the field transforma-
tion and achieve predesigned functionalities.30–32 However, func-
tional meta-devices so far achieved in the terahertz regime are
mostly separated from the generation source, which makes it
difficult to make the entire device compact. Therefore, it would
be extremely attractive if we can combine the state-of-the-art
broadband terahertz emitters with metasurface technologies,
which could give rise to compact and flexible terahertz sources
with full access to waveform control.33–35

This, in fact, can be realized by employing the novel spin-
tronic terahertz emitters composed of magnetic multilayer
heterostructures.36–41 These spintronic emitters exhibit the ad-
vantages of being low-cost, highly reliable, efficient, and flex-
ible, allowing implementations with a wide range of driving
laser conditions, from nJ pulse energy of a compact laser oscil-
lator36 to mJ pulses delivered by a laser amplifier.38,42 An ultra-
broad spectral bandwidth covering 1 to 30 THz can be produced
when excited by short 10-fs laser pulses.36 Moreover, because
the micro-nano fabrication of metal thin films is technologically
well established, these spintronic emitters can be easily made
into various metasurface structures, opening up great potential
for applications. When excited by femtosecond laser pulses,
the laser-induced transient currents, which are inherent to the
spintronic emitters,37 can serve as efficient and active driving
sources of the metasurface, the properties of which can be well
controlled by the excitation lasers and external fields. Hence,
such a hybrid terahertz emitter has the potential for high-
efficiency terahertz-wave generation and manipulation in a
single device. Understanding the influence of the metasurface
structure on the laser-induced charge and current dynamics
on the microscopic scale is the key for sophisticated device
design in the future.

In this work, we propose a novel spintronic-metasurface tera-
hertz emitter, consisting of metasurface-patterned ferromagnetic
(FM) and nonmagnetic (NM) heterostructures. Taking the
prototypical stripe-pattern metasurface as an example, we dem-
onstrate the generation and manipulation of chiral terahertz
waveforms in an efficient and highly flexible manner. The ellip-
ticity can reach >0.75 for a broad terahertz bandwidth (1 to
5 THz), and the generation efficiency is comparable to the non-
linear crystals commercially available. Furthermore, by simply
varying the transient spintronic-origin currents with an orien-
tated external magnetic field, the emitter functionality can be
actively controlled, leading to continuous tuning of the terahertz
polarization state and helicity. We show that the geometric con-
finement in metallic microstructures can generate anisotropic
screening charges/currents in responses to the laser-induced
spintronic-origin currents, which, in turn, strongly modifies the
polarization characteristics of the terahertz waves emitted from
the whole device in the desirable way. Our work opens a new
pathway to active metasurface-tailored spintronic devices for
efficient generation and control over the electric-field vectors
in the terahertz regime.

2 Principles and Methods
Figure 1(a) shows the schematic of the experimental setup. In
our experiments, the ultrashort laser pulses (duration ∼24 fs,
center wavelength 1030 nm, and repetition rate 100 kHz)
generated by a compressed Yb:KGW laser amplifier are used
to excite the active spintronic-metasurface device. The high-
quality pulse compression is enabled by solitary beam propaga-
tion in periodic layered Kerr media.43 The excitation pulse
energy is ∼20 μJ, and the beam radius on the metasurface emit-
ter is ∼1.1 mm (see Sec. S1 in the Supplementary Material for
details on the experimental setup). The metasurface emitter is
composed of stripe-patterned FM/NM heterostructures. The
FM/NM heterostructure consists of NM Pt (thickness of 3 nm)
capped with FM Fe50Co50 (1.4 nm) and supported by a thick
SiO2 or Al2O3 substrate. We note that other FM metals and
alloys, such as Fe, Co, and Co-Fe-B alloys, can also be used in
substitution for Fe50Co50 since similar terahertz signals can be
generated from the heterostructures composed of these materi-
als.36 The stripe patterns are then fabricated by the standard
optical lithography and ion beam etching process (see Sec. S2
in the Supplementary Material). The metasurface structures with
different stripe widths (d) and spacings (l), as well as on differ-
ent substrates (SiO2, Al2O3), are investigated [see Fig. 1(a)]. In
the experiments, the stripe orientation is fixed along the x axis,
while the magnetization of the FM layer (M) is saturated by an
oriented external magnetic field (H) with a field magnitude of
200 mT, and the field orientation can be continuously adjusted
in the xy plane. The field angle θH is defined as the angle be-
tweenH and the stripe orientation (x axis), as shown in Fig. 1(a).
The applied field is much stronger than the anisotropy field of
the FM film, thus the FM magnetization is expected to always
align parallel to H (see Sec. S3 in the Supplementary Material).
Under femtosecond laser illumination, the longitudinal spin
current (js) arising in the FM layer is converted into a transverse
charge current (jc) via the inverse spin-Hall effect (ISHE) in
the NM layer, given by jc ¼ γjs ×M∕jMj, where γ is the
spin-Hall angle of the NM layer.37 As a result, in our experi-
ments, the laser-induced charge current jc always flows perpen-
dicularly to H and serves as an active driving source of the
stripe-patterned metasurface [see Fig. 1(a)]. The emitted tera-
hertz field and its polarization state are then detected by the
polarization- and time-resolved terahertz spectroscopy setup
based on electro-optic sampling (EOS)44–46 (see Sec. S4 in
the Supplementary Material).

3 Results
We first present evidence showing that the metasurface can in-
fluence the device functionality by inducing strong amplitude
and phase modulations onto the emitted terahertz waveforms.
The EOS signals for the terahertz-wave components polarized
parallel (E∕∕) and perpendicular (E⊥) to the stripes are plotted in
Fig. 2(a). Clearly, the perpendicular electric-field amplitude E⊥

is strongly suppressed compared to E∕∕, which is consistent with
previous work.38,47 The results of the peak-to-peak amplitude
Vpp [see Figs. 2(a) and 2(b)] as a function of θH are summarized
in Fig. 2(c). The results of both E⊥ and E∕∕ exhibit a sinusoidal
behavior, while a ∼90 deg angle shift can be observed.
Furthermore, our results in Figs. 2(a) and 2(b) show that the
terahertz waveforms, respectively, for the two orthogonal polar-
izations, possess almost identical temporal waveforms. This
conclusion is further corroborated by the normalized spectra
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shown in Fig. 2(d), which displays identical spectral shapes for
each polarization, although the spectrum of E⊥ is blue-shifted
compared to E∕∕.38,47 The coherent detection of EOS allows us to
retrieve the phase information, and, most interestingly, the phase
difference (φ⊥ − φ∕∕) stays close to �π∕2 throughout the entire
spectrum [see Fig. 2(e)]. This clearly indicates the generation of
chiral terahertz waves. It is worthy to note that the above results
are obtained from a device with d ¼ 5 μm, and the filling factor
(FF) d∕ðdþ lÞ ¼ 0.5 on a SiO2 substrate. Similar observations
can be made on other metasurface geometries (see Sec. S5–S7 in
the Supplementary Material).

Our findings here are distinct from past works, which only
focused on the amplitude modulation and the spectral shift of the
terahertz waves from the stripe-patterned terahertz emitters.38,47

Instead, our results clearly show that the directions parallel and
perpendicular to the stripes define a set of canonical coordinates,
in which the terahertz waveforms of E∕∕ and E⊥ are decoupled
from each other and possess a broadband quarter-wave phase
difference. This is the key for the generation and manipulation
of the chiral terahertz waves.

The above observations can be conceptually captured by a
geometric-confinement model, which considers the dynamics
and the interplay of the spintronic-origin current density (jc),
as well as the transient metasurface-induced charges (Qi) and
current density (ji) that flows in the y direction [see Figs. 1(b)
and 1(c)]. According to Ohm’s law, the complex electric-field
component E∕∕ (E⊥) of the emitted terahertz wave is propor-
tional to the complex magnitude of the total current density

Fig. 1 Generation of chiral terahertz waves from a stripe-patterned spintronic-metasurface
emitter. (a) Schematic of the experimental setup. The femtosecond pulse is focused to excite
a stripe-patterned spintronic-metasurface emitter along the z direction. The stripe is aligned along
the x direction. An orientated external magnetic field (H) is applied in the x–y plane with a field
angle of θH. A few-cycle chiral terahertz pulse is generated, which can be decomposed into
electric-field components parallel (E∕∕) and perpendicularly (E⊥) to the stripes. The stripe width
is d , and the spacing between the stripes is l . Under laser illumination, spin currents js are driven
from the FM layer (yellow) to the NM layer (blue) through the interface. (b) Illustration of the current
dynamics and inductive coupling in the x–y plane when θH ¼ 90 deg. Owing to ISHE, spin cur-
rents are converted to charge currents jc, which flow along the stripes. (c) Illustration of the charge
and current dynamics and the capacitive coupling in the x–y plane when θH ¼ 0 deg. jc flows
perpendicularly to the stripes, which induces the transient charges (Q i) and counteractive currents
(ji), which suppresses the current density j⊥a .
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flowing in the same direction j∕∕a (j⊥a ) by E∕∕ðωÞ ¼
κ∕∕ðωÞj∕∕a ðωÞ and E⊥ðωÞ ¼ −κ⊥ðωÞj⊥a ðωÞ,36,37 where κ∕∕;⊥ is
the proportionality constant which is determined by the con-
ductance of the metal layer and the metasurface geometry,
and the minus sign for the perpendicular direction results from
our measurement geometry [see Fig. 1(c)]. As shown in
Fig. 1(c), along the stripes (x axis), the current density j∕∕a is
solely contributed by the x-component of jc, given by j∕∕a ¼
jc sin θH, where jc represents the complex magnitude of jc.
On the other hand, in the direction perpendicular to the stripes
(y axis), the current density j⊥a consists of both the y component
of jc and the metasurface-induced “counteractive” current ji,
which yields j⊥a ¼ jc cos θH − ji [see Fig. 1(c)]. The counter-
active current ji is driven by the electric field built up by the
transient charge density Qi at the stripe boundaries with
ji ¼ σQi∕C, where σ is the metal-layer conductivity, and C
is the constant of proportionality between the charge-induced
electric field in the metal layer and the charge density (see
Sec. S8 in the Supplementary Material). Here, Qi can be con-
sidered as the result of the accretion of j⊥a at the stripe bounda-
ries. In the frequency domain, we derive that jiðωÞ ¼
− σðωÞ

iωC j⊥a ðωÞ. For convenience of discussion, we further assume
the low-frequency limit (ω → 0), where σ and κ∕∕;⊥ both become
constant,48 and it finally yields E∕∕ðωÞ ¼ κ∕∕jcðωÞ sin θH
and E⊥ðωÞ ¼ − iωκ⊥C

σ jcðωÞ cos θH (see Sec. S8 in the Supple-
mentary Material for the detailed derivation). Here, the low-
frequency limit corresponds to the terahertz frequency, where
the wavelength is much longer than the geometrical period
(dþ l) of the metasurface.

First of all, we obtain from the above model that the ampli-
tude of E⊥ is scaled by a factor of ωκ⊥C∕σκ∕∕ (ω → 0) when
compared to E∕∕, which leads to the observed suppression of E⊥

[see Figs. 2(a) and 2(b)]. The factor of ω also explains the spec-
tral blueshift of E⊥ with respect to E∕∕ [see Fig. 2(d)]. Second,
the amplitudes of E∕∕ and E⊥ follow the sine- and cosine-
functions of θH, respectively, which is consistent with Fig. 2(c).
Finally, the complex amplitudes of E∕∕ and E⊥ exhibit a spectral
quarter-wave phase difference, which also agrees with the ex-
perimental results in Fig. 2(e). We note that, although this sim-
ple model can qualitatively explain the general features of our
observations, the quantitative agreement over the entire spec-
trum is elusive. Neither is the inductive and capacitive coupling
of the transient currents and charges between the stripes con-
sidered in this model. Hence, numerical simulations using the
frequency-domain solver of COMSOL Multiphysics49 are fur-
ther conducted to provide a comprehensive understanding of
our results and to extract the microscopic mechanism (see
Sec. S10 in the Supplementary Material).

The broadband quarter-wave phase difference naturally leads
to chiral terahertz emission. In Fig. 3(a), we plot a typical time
dependence of the electric-field vector for a chiral terahertz
waveform obtained in our experiments, with the three projec-
tions displaying the waveforms of the mutually orthogonal com-
ponents E∕∕ðtÞ and E⊥ðtÞ, and their parametric plot. Here, a
stripe pattern with d ¼ 10 μm and FF ¼ 0.5 is excited by the
laser pulses under θH ¼ −17 deg. The generation of the chiral
terahertz waveforms can be well captured by our numerical sim-
ulation performed for the same device and the same excitation
conditions [see Fig. 3(a)]. As clearly shown in Fig. 3(b), the
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ellipticity and handedness of the emitted terahertz radiation can
be conveniently and continuously controlled by changing the
field angle θH. These results can also be well reproduced by
the simulations (see Fig. S14 in the Supplementary Material).

To quantitatively characterize the polarization state of the
emitted terahertz waveform, the broadband ellipticity hεi is
calculated by considering the spectral intensity and the phase
difference over the entire spectrum,

hεi ¼
R
∞
0 εðωÞ½jE∕∕ðωÞj2 þ jE⊥ðωÞj2�dωR

∞
0 ½jE∕∕ðωÞj2 þ jE⊥ðωÞj2�dω ; (1)

and ε is given as50,51

ε¼ sgn½s3�

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jE∕∕j2þjE⊥j2− ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðjE∕∕j2− jE⊥j2Þ2þ4jE∕∕j2jE⊥j2 cos2ðφ⊥−φ∕∕Þ
p

jE∕∕j2þjE⊥j2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjE∕∕j2− jE⊥j2Þ2þ4jE∕∕j2jE⊥j2 cos2ðφ⊥−φ∕∕Þ

p
s

;

(2)

which can be derived from the Stokes parameters, s3 ¼
2jE∕∕jjE⊥j sinðφ⊥ − φ∕∕Þ50 (see Sec. S11 in the Supplementary
Material), and ε ¼ 1 and −1 represent left and right circular
polarization, respectively, defined from the point of view of
the receiver. Because the value of cos2ðφ⊥ − φ∕∕Þ over the entire
spectrum is almost independent of θH under a given metasurface
structure [Fig. 2(e)], the tuning of the field ellipticity here is real-
ized by adjusting the relative amplitudes of E∕∕ and E⊥ with the
field angle θH according to Eqs. (1) and (2) [see Fig. 2(c)]. The
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handedness of the terahertz field, on the other hand, is changed
in different regions of the field angle, as illustrated in the inset
of Fig. 3(a).

In Fig. 3(c), we summarize the experimental results obtained
from the devices with FF ¼ 0.5 of the optimum hεi, accompa-
nied by the relative intensity η of the terahertz fields. Here,
η is given as

η ¼
R∞
0 ½jE∕∕ðωÞj2 þ jE⊥ðωÞj2�dωR∞

0 jEhomoðωÞj2dω
; (3)

where Ehomo is the field amplitude of a homogeneous thin-film
emitter with the same FM/NM heterostructure measured under
the same experimental conditions (see Sec. S4 in the Supple-
mentary Material). These results were obtained under an opti-
mum θH, which yields balanced field amplitudes of the two
orthogonal polarizations, thus leading to the highest hεi under
a specific metasurface geometry [same for Fig. 3(a); see Sec. S9
in the Supplementary Material]. The numerical simulations
exhibit good agreement with these results for a wide range
of d [dashed lines in Fig. 3(c)]. We find that elliptically polar-
ized terahertz waves can be generally produced from the
spintronic-metasurface devices with d < 80 μm, while the field
circularity monotonically declines as d increases. In our experi-
ments, hεi as high as 0.75 can be achieved in the narrow stripes
(d ¼ 3 to 10 μm). Since, with these narrow stripes, the phase
difference can stay close to π∕2 over a broad spectral range
[Fig. 2(e)], the ellipticity limit is thus caused by the difference
in the spectral amplitudes, which results from the blueshift of
the E⊥ spectrum relative to E∕∕ [Fig. 2(d)]. Owing to the strong
transverse confinement of these narrow stripes, the correspond-
ing terahertz intensity is, however, generally one order of mag-
nitude lower compared to that from a homogeneous thin film.
For wider stripes, η increases, while hεi decreases because the
geometric confinement becomes weaker in the perpendicular di-
rection, which leads to the terahertz emission appearing more
alike to that from a homogeneous thin film. Considering both
hεi and the terahertz field strength, the metasurface with d≈
20 μm could be the optimum choice, since elliptically polarized
terahertz waves with hεi ∼ 0.6 can be generated with a relative
high intensity of η ∼ 30%. In Fig. 3(d), we further plot the spec-
trally resolved ellipticity εðωÞ and find that high ellipticity of
terahertz waveform (ε > 0.85) can be realized in a narrow band-
width between 1.5 and 2 THz when d ¼ 3 to 10 μm. With ap-
propriate spectral filtering, terahertz waveforms with high
ellipticity can be generated.

In Fig. 3(d), we can also observe stepwise drops of εðωÞ
beyond specific resonant frequencies (open symbols), which
can be attributed to the collective coupling dynamics between
the transient charges and currents over the entire metasurface
[see Figs. 1(b) and 1(c)]. In Figs. 4(a) and 4(b), we plot the
spectral amplitudes of E⊥ and E∕∕, respectively, normalized
by Ehomo. As shown in Fig. 4(a), the amplitude of E⊥ increases
linearly as a function of the terahertz frequency at low frequen-
cies, which is consistent with our geometric-confinement model.
Furthermore, multiple spectral anomalies can be observed, man-
ifested as peaks and steps in the normalized spectra, as well as
the sharp deviations of the relative phase jφ⊥ − φ∕∕j from π∕2
(see Fig. S7 in the Supplementary Material). Both the spectral
and phase variations at the spectral anomalies are responsible
for the plummets of field ellipticity, as labeled in Fig. 3(d).
These anomaly features can be mostly well reproduced by the

numerical simulations [see Figs. 4(c) and 4(d)], whereas the
high-frequency dips present in the simulation for E∕∕ spectra
[see Fig. 4(d)] are too weak to be observed experimentally.

In Fig. 4(e), we summarize the anomaly frequencies (fma ,
m ¼ 1, 2 denotes the low- and high-frequency anomalies) for
different metasurface periods (dþ l). Here, we also include the
results obtained from FF ≠ 0.5 (colored symbols) and those
from the emitters with an Al2O3 substrate (half-filled symbols)
(see Sec. S6 and S7 in the Supplementary Material). Interest-
ingly, fma is only related to the geometrical period of the meta-
surface, which can be characterized by a geometrical frequency
fgeo ¼ vc∕ðdþ lÞ, where vc is the speed of light in vacuum.
This indicates that these anomalies originate from the collective
dynamics across the entire metasurface. As shown in Fig. 4(e),
we find that the low- and high-frequency anomalies can be well
fitted by fma ¼ fgeo

n , where n is the refractive index of the media.
For the high-frequency anomalies f2a (open symbols), the refrac-
tive index of the air (nair) yields an excellent fit, while the
low-frequency anomalies f1a (filled symbols) can be fitted by
the terahertz refractive indices of the substrates (nSiO2

≈ 1.95
or nAl2O3

≈ 3.0752), indicating that it originates from the dynami-
cal coupling through the substrate layer. The different shapes of
the anomaly features could be attributed to the Fano-like cou-
pling between the narrow-band Rayleigh diffraction anomaly
and the broad-band surface plasmon excitation, which is differ-
ent for the TE and TM polarizations.53,54

With the help of the numerical simulations, we try to better
understand the generation mechanism for chiral terahertz waves
in the sub-wavelength scale. Taking d ¼ 50 μm and FF ¼ 0.5
as an example, we plot in Figs. 4(f) and 4(g) the space- and
frequency-distributions of the total current density jj∕∕;⊥a j in a
single metal stripe, which is normalized by the amplitude of
the driving current density jjcj. For j∕∕a [see Fig. 4(g)], the skin
effect can be clearly observed, and the current density is largest
near the stripe boundaries (y ¼ �25 μm). On the contrary, the
current density of j⊥a [see Fig. 4(f)] is almost completely sup-
pressed at the boundaries due to the conductivity discontinuity,
forming a standing-wave-like current distribution across the
stripe. Indeed, the appearance of an additional node, which cor-
responds to a higher-order standing wave, starts to appear when
the frequency is higher than vc∕2d (∼3 THz in this case). In
the low-frequency region, j⊥a is almost completely subdued
throughout the entire stripe, which is consistent with the geo-
metric-confinement model. This can be understood by the fact
that more transient charges (Qi) tend to be accumulated at the
boundaries when the frequency is lower, leading to a stronger
counteractive current (ji), which suppresses the flowing of j⊥a .
This observation confirms that the spatial confinement on the
laser-induced transient currents in the stripe-patterned meta-
surface is responsible for the observed spectral and phase
modulations, as well as for the generation of chiral terahertz
waveforms. The spectral anomalies in Figs. 4(a)–4(d) can also
be clearly resolved as the sharp peaks or steps of the current
density in Figs. 4(f) and 4(g) at the corresponding frequencies.

4 Discussion
To increase the generation efficiency of the chiral terahertz
waves, an intuitive way is to increase FF for a narrow d by
reducing l. However, our results indicate that the ellipticity can
be deteriorated due to the stronger dynamical coupling between
the stripes and the appearance of the spectral anomalies. In
Fig. 5(a), we show that hεi for d ¼ 50 μm on a SiO2 substrate
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decreases monotonically when FF > 0.4. This can be explained
by a stronger capacitive coupling between the stripes [see
Fig. 1(c)], which results in weaker ji and, hence, less confine-
ment of the transverse currents (see Sec. S8 in the Supple-
mentary Material). This is supported by the simulation results
of the geometrical factor C, which rises monotonically when the
stripes become denser [see Fig. 5(a)]. On the other hand, hεi
does not keep increasing for a lower FF as the stripes become
more isolated. We find that this could be influenced by the

appearance of the low-frequency anomalies (f1a) around the
spectral peaks of the terahertz waves. Figure 5(c) shows the
broadband ellipticity hεi obtained from our simulation under
different d and FFs, the selected cuts of which generally agree
with our experimental results [see Figs. 5(a) and 5(b)]. Notably,
a high hεi region exists in between FF=0.3-0.4 for a number of
different d. Given that the central frequency of the terahertz
wave in our experiments is ∼1.5 THz [Fig. 2(d)], and also
the low-frequency anomaly is given by f1a ¼ 1

nSiO2
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the substrate is SiO2, the agreement of these two frequencies
yields dþ l ¼ 100 μm, which shows good correspondence with
the left boundary for this high hεi region [the white dashed line
in Fig. 5(c)]. This result indicates that the coincidence of the
value between the anomaly frequency and the terahertz central
frequency could reduce hεi. As a result, to optimize the field
ellipticity under this situation, one should try to increase the
anomaly frequencies beyond the spectral range of interest,
which could be realized by choosing a substrate with a low tera-
hertz refractive index in practice.

The spintronic-metasurface emitter in our work represents a
high-efficiency, flexible, and economical solution for generating
broadband chiral terahertz radiations with high ellipticity and a
tunable azimuthal angle. First of all, its generation efficiency is
comparable to the standard terahertz emitters that are commer-
cially available (see Sec. S4 in the Supplementary Material).
Considering that a peak field strength up to 300 kV cm−1 can
be generated from a homogeneous thin-film emitter when excited
by a multi-millijoule laser amplifier,42 our approach has the po-
tential to generate chiral terahertz fields up to ∼100 kV cm−1
under similar laser conditions [see Fig. 3(c)]. Second, the same
emitting device can be compatible with different types of lasers,

from a compact laser oscillator to a high-energy laser amplifier,
highlighting the great flexibility of our method. This is also ad-
vantageous over the other chiral terahertz sources enabled by
nonlinear frequency-conversion in gas plasmas10–15 and nonlinear
crystals,17,18 for which the high-energy laser pumping is always in
demand. Third, our method yields high ellipticity and a tunable
azimuthal angle. Previously, flexible manipulation of chiral tera-
hertz waves from a spintronic emitter with a nonuniform external
magnetic field was demonstrated, while the reported ellipticity
was low, because of the challenge to generate π∕2 phase differ-
ence by varying the nanofilm thickness.55 In contrast, the π∕2
phase difference in our work is naturally the result of the trans-
verse confinement applied by the metasurface, which enables the
generation of broadband chiral terahertz waves with high ellip-
ticity. The azimuthal angle of the elliptical terahertz wave can
also be easily adjusted with our device by rotating the stripe
orientation and the external magnetic field together, with a fixed
field angle θH.

5 Conclusion
Our work opens a new pathway to metasurface-tailored spin-
tronic emitters for efficient generation and control of terahertz
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waves. The combination of ultrabroadband, efficient spintronic
emitters and metasurfaces with predesigned functionality could
lead to many more types of emitting devices for different spatial
and temporal terahertz waveforms (e.g., vector beams, Airy
beams, etc.) Although the laser-induced spintronic dynamics
in the individual metasurface units are identical in this work,
the sophisticated capability of modern spintronic nanoscale en-
gineering has already allowed the manipulation of magnetiza-
tion, magnetic anisotropy, and spin-current dynamics in each
individual unit. This will offer a new degree of freedom to tailor
the functionality of spintronic-metasurface devices, which could
potentially lead to arbitrary vector-control of broadband tera-
hertz waves in both space and time.
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